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Stationary Velocity Distribution 
in an External Field: 
A One-Dimensional Model 
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Received June 30, 1985 

The velocity distribution of a charged hard rod coupled to an external field and 
moving in a neutral equilibrium hard rod gas is studied on the basis of 
Boltzmann's equation. The exact stationary solution is found. Above a threshold 
value the field becomes effective in the high-velocity region sIowing down the 
decay of the velocity distribution. The drift velocity and the mean kinetic energy 
are discussed as functions of the field. 

KEY WORDS:  Boltzmann equation; external field; threshold value; decay 
slowing one-dimensional model. 

1. I N T R O D U C T I O N  

Our aim in this note is to determine and analyze the stationary velocity 
distribution of a charged hard rod coupled to a constant and uniform 
external field, and moving in a neutral gas composed of mechanically iden- 
tical rods. The probability densityf(r ,  v, t) for finding the charged test par- 
ticle at point r with velocity v at time t will be supposed to satisfy the linear 
Boltzmann equation (see the introduction-discussion in Resibois(l~), 

0 0 O) 

= pfdv'Jv-v'l  [f(r,v',t) cp(v)-f(r,v,t)cp(v')] (1.1) 
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Here a denotes the acceleration resulting from the action of the field. The 
state of the host neutral fluid is represented by a constant number density p 
and the velocity distribution (p(v). 

Equation (1.1) describes a one-dimensional Markov process in which 
the charged particle suffers hard collisions with the frequency proportional 
to the relative speed I v-v ' l .  The dynamics reduces to instantaneous 
exchanges of velocities between colliding rods. In the time intervals 
separating the encounters the charged particle moves with acceleration a. 

The complete solution of the initial value problem for equation (1.1) 
in the absence of the external field was found by R6sibois. (1/For a r 0, two 
cases have been studied up to now: (i) the zero-temperature limit, (2) 

q~(v) = &(v) (1.2) 

and (ii) the one-speed model, (3) 

~o(v) = �89 - u) + 6(v + u)] (1.3) 

Our purpose here is to determine the stationary velocity distribution 
satisfying (1.1) in the physically relevant case where the state of the neutral 
fluid is described by the Maxwell distribution 

(m) J2 
q ) ( v ) = \ ~ / )  exp ( 2kBT] (1.4) 

corresponding to some temperature T, k B is Boltzmann's constant and m 
the mass of a single rod. 

Two characteristic energies appear in this problem: 
map ~=energy absorbed by the charged rod from the field on the 

mean free path 
ke T = thermal energy of the host fluid. 
In order to show explicitly how they enter into the kinetic equation, it 

is convenient to introduce the dimensionless velocity 

w=v(kBT/m) 1/a (1.5) 

The stationary velocity distribution F(w) satisfies then the equation 

eF'(w) = ~(w) ~ dw' Iw - w'l F(w')-F(w) I(w) (1.6) 
, )  

where F'  is the derivative of F, 

~(w)=exp ( -  W--~-2 )/(2~z) 1/2 (l.7) 
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and 

I(w)= f dw' Iw- w'l ~(w') 

= l w l + 2  q~(w)- Iwl dw' ,f(w') 
wl 

(1.8) 

We look for the solution of (1.6) satisfying the conditions 

F(w) >1 O, f dw F(w) = 1 (1.9) 

The dimensionless parameter 

- /  
map 

= - -  (1 .1o)  
k,~ T 

measures the ratio of two characteristic energies. One can expect the shape 
of the stationary distribution to be sensitive to the value of e. That this is 
actually the case can be seen by considering equation (1.6) in the 
asymptotic region w ~ + ~ .  It takes there the simple form 

eF'= we  - wF (l.11) 

so that 

F(w) _ 
w,  ~ q - o o  

(1 - e)-I  ~(w) + C(e) exp( - we/2e), 

W 2 

T~(w), 

e r  1 (1.12a) 

a=  1 (1.12b) 

Hence, when e < 1, the high-energy asymptotics of F is determined by the 
thermal bath 

F ( w )  ~- ( 1 - ~ ) - ~ ( w ) ,  ~<1 
w ~  q-of) 

(1.13) 

However, when the field is strong enough (e> 1) the decay of F(w) 
becomes slower 

F(w) -~ C(e)  e x p ( -  w2/2e), e > l (1.14) 
w ~  + c o  

controlled by the field. The existence of the threshold value e = 1 makes the 
study of the stationary distribution F quite interesting. 



1094 Gervois and Piasecki 

In the next section we solve equation (1.6) and prove the correctness 
of equations (1.13), (1.14). The stationary drift velocity and the mean 
kinetic energy are then analyzed as functions of e. In the last section the 
discussion of the results is presented. 

2 . S T A T I O N A R Y  S T A T E  

2.1. Genera l  Resul ts  

In order to solve equation (1.6) we set 

F = ~ G  (2.1) 

where q~ is given by equation (1.7), and rewrite it in the form 

~ [ G ' ( w ) - w G ( w ) ] = f  dw' Iw-w'h q~(w ' )G(w ' ) -G(w) I (w)  (2.2) 

Differentiating twice both sides of (2.2) we find 

~[G' - wG]" = - G " I -  2G'I' 

which is a second-order differential equation for 

/-/= C' (2.3) 

ell" + ( I -  ew) H' + 2(I' - e) H = 0 (2.4) 

Equation (2.4) can be conveniently written in terms of the function Z 
related to H by 

[ ;o ] H = z q ~ - l e x p  - e  1 dw'I(w')  (2.5) 

The substitution (2.5) is suggested by the fact that the function 

[ ;o ] ~b - l e x p  _ e  t dw' I(w') 

is a solution of the first-order differential equation obtained from (2.2) by 
neglecting in the right-hand side the gain term. We find 

e(Z" + wz' - Z) + (I'z - Z'I) = 0 (2.6) 

But the definition (1.8) implies the equation 

I=  I" + wI' (2.7) 



Stationary Velocity Distribution in an External Field 1095 

so that )~ = I is a solution of (2.6), which is quite remarkable. The second 
linearly independent solution can be constructed by standard methods. In 
this way, we arrive at the following two solutions of equation (2.6) 

Hl(W)=l(w)q5 X(w) exp - e  - 1  d w ' I ( w ' )  (2.8) 

H2(w) = H~(w) - ~  dw' I (w' )  S ~ ( w ' )  (2.9) 

Using equations (1.7), (1.8) we find 

[w t(w') dw' = (1 + w2) fo~ aw' e(w') + w~(w) (2.10) 
J 0  

for w--* -oo  we thus get the asymptotic formulas 

H i ( w )  ~ ~- - - w e x p [ ( 1  +e  1) w2/2](2rc)1/2 (2.11) 

Ha(w) ~- w - (2.12) 
w ~  - - o o  

Equations (2.1), (2.3) show that function H~, when used to construct the 
velocity distribution, would lead to an unacceptable behavior 
F~exp(w2/2e) for w ~  -oo.  The physically relevant solution of (2.4) is 
thus H2. We conclude that the stationary distribution has the form 

The constant A(e)  can be readily calculated from the kinetic equation (1.6) 
which in the limit w ~ - o r  takes the asymptotic form 

eF' = - w ~  + wF 

showing that 

F(w) _~ ( l + e )  -~ 

Comparison with (2.13) gives 

A(e)  =- (1 + e)-~ (2.14) 

The value of B(e)  can be found from the normalization condition (1.9) 

B(e) = ~ dw ~(w) dw' H~(w') (2.15) 
O:3 - - 0 0  
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The solution (2.13) of equation (1.6) representing the stationary velocity 
distribution of the charged rod has been thus completely determined. 

It turns out that B(c) can be given a direct physical interpretation. 
Indeed, according to equation (2.13) the drift velocity of the charged rod 
equals 

( w )  = ( dw wF(w) = B(e) J(e) (2.16) 
d 

where 

J(~) = dw w w 

As wq~ = - r  integration by parts yields 

dw'H2(w') (2.17) 

2.2. Study of the Three Cases ( e < l ,  e = l ,  e > l )  

2.2.1. When 0 < ~ <  1, equation (2.15) defining B(e) can be sim- 
plified. Indeed, equations (1.8) and (2.8)-(2.10) show that in this case 

H~(w) ~-~+~ ( l ~ - ~ ) w  -2 (2.21) 

r 

where 

[ Jo 1 F(w) =exp - e  -1 dw' I(w') (2.18) 

But I F =  -eF ' .  Hence, further integration by parts yields 

J(e) = ~ dw 12 

The above integral can be evaluated with the use of the relation 
2 r  = I" = I -  wI' [see equation (2.7)]: 

-oo = ~  _ ~  dw = 1 ( 2 . 1 9 )  

The simple formula then follows 

( w )  = eB(e) (2.20) 

Up to the factor e, B(e) represents the drift velocity. 
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so that the integral j'+~ dw H2(w ) is convergent. Using the relation 2~b = I" 
we can thus write 

2~ B_I(~) f + ~  fw - -  = d w  I "  dw' H 2 

= dw H 2 - dw I'H2 (2.22) 
- o c  

The differential equation (2.4), satisfied by H2, integrated over the interval 
( -  o% + ~ )  shows that 

f dw(I-ew)H'2 + 2 1 dw(I'-g) H2=0 

or, after integrating by parts 

f dw I 'He:e  f dw H2 

Inserting this into equation (2.22) we obtain 

B(e)=2e ( 1 - e  2) dwH2(w) (2.23) 

and for 0 < e < 1 the stationary distribution (2.13) takes the form 

~ ( w ) [  2~ ~ W _ ~ d w ' ~  (2.24) 
F(w)=T- ~ lq  1--a~+_o~dw, Hz(w)j  

When w--* -oc  we recover the asymptotic formula (1.13): 

F ( w ) -  (1 - e )  -1 ~(w) 

In order to evaluate the drift velocity in the weak field limit e~ 1, we 
have to investigate the e dependence of the integral 

f fw dw H 2 = --~ dw ~-1[., dw' crpI-2F-t 
- o o  

W : fawTH2+ fdw,-2 
[function F has been defined in equation (2.18)]. As Iw/II < 1, it implies 
the asymptotic formula 

fdwH2 ~oafdw1-2  

8 2 2 / 4 2 / 5 - 6 - 2 4  
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Therefore the weak field limit for the drift velocity (2.20) reads 

]' 
( w )  ~1  2~ dw I-2(w) (2.25) 

The stationary current is proportional to the strength of the field. The 
linear response theory applies in this case. 

2.2.2.  Let us analyze now the special case e = 1. As 

lim q~ 1F = (~_~) 1/2 
w ~  + o o  g =  1 

we get 

-~ w - -  (2.26) H2(w) w~ +oo oo I2F 

In contradistinction to the case e < 1, function H2 is not integrable. Putting 
e = 1 into the differential equation (2.4) and integrating over the interval 
( - ~ ,  w) we find 

;w 
H ' 2 + ( I - w ) H 2 +  d w ' ( I ' - l ) H 2 = O  

- -  o o  

When w ~ + ~ ,  it becomes 

lim H'2(w)=Hi(oo)= d w ' ( 1 - I ' ) H 2  
w ~  + o 0  - - o 0  

= dw I" dw' H 2 
- - o o  - -  o o  

Combining this with equations (2.26), (2.15) leads to the formula 

g 1 ( 1 )  = H 2 ( o o )  = - -  - - c o  I 2 F  

The stationary distribution for ~ = 1 has the form 

F(w) = q~(w) + dw' H2(w ' ) /Hi (~  ) (2.28) 
g ~ l  cO 

when w ~ +0% the right-hand side behaves like w2clJ(w)/2, in accordance 
with equation (1.12b). 
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2 . 2 . 3 .  Let us finally study the region e > 1. 

Equations (1.8), (2.8)-(2.10) imply here the asymptotic behavior 

e x p I ( e - 1 )  14'2- 1 I f  ~ dw ,q5 
2e - o~ I2F 

Therefore the stationary distribution (2.13) decays in the large energy 
region as 

F(w) ~- 
w ~  oo  

with 

C(e) e x p ( -  w2/2e) 

ge - 1/2e f + ov (~ 
c(~) = ~ ( ~ ) ~  ~ dw 

(2.29) 

[-compare with equation (1.14)]. The useful representation of B(e) is 
obtained from (2.15) by writing @ = ( I ' - l ) ' / 2 ,  and integrating by parts 

B-~(~) =-~ f dw(1 - I') H 2 (2.30) 

We shall now evaluate B(e), and thus the drift velocity, in the strong field 
limit e --* oo. To this end, it is convenient to transform the right-hand side 
of (2.30) by putting in H 2 written as 

H 2 = ( I ' H 2 / I ) '  + C - : I ' H  2 - -  I ' 1  2 

Integrating by parts the contribution corresponding to the first of the three 
terms we get 

= f  dw I'I' --i- H2 + g l f d w ( 1 - l ' ) l ' H 2  

/ 1 ' \  2 

as ]I'J < 1, the second term, multiplied by e -1 can be neglected in the 
e ~ ~ limit. The last term being e independent, we focus our attention on 
the first one which equals 

2 ~ dwI'(w) exp - dw' 
,) 

- - o o  0 

w , ~ ( w ' )  w, 

x f dwi2-5~exp l ;o  dw "I(w'')] (2.31) 
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The contribution to the above expression coming from the integration 
over the interval ( -  0% 0) satisfies the inequality 

dwI'Ff~_ dw -~F -I <f2 dw f_ dw'  
with an ~-independent bound, which is a straightforward consequence of 
the inequalities 

[ f: 1 j I ' l < l ,  exp _~  1 dw"I(w") <1  for w>w' 
/ 

In order to investigate the integral over the positive semiaxis w > 0, we 
use the fact that the function 

=exp  { - e  ' [  l + w 2  f ~  1} 2 (1 + w  2) dw'qS(w')+wCP(w) 

satisfies there the inequalities 

e-S/~ exp( - w2/2e) < F(w) < exp( - w2/2~) 
where 

2-=sup � 8 9  2) dw'q)(w')+wqS(w) 
w~>O L 

Clearly in the e ~ ~ limit, F(w) for w > 0 can be replaced by exp(-W2/2~). 

Taking this into account and putting w=xf~u, we rewrite the 
analyzed contribution to the term (2.31) in the form 

2x/~ f~ duI'(x/Tu)exp ( -  U---2 ) f "f#"dw ' ~-~- I2F 

When e --, oo, we asymptotically obtain 

vo b / 2 \  co 

as I ' (oo)=  1, and ~-~oo dw(r = 1 [see equation (2.19)]. 
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Going back to the drift velocity, we get 

( w ) = e B ( e )  --- (2e/TO) 1/2 (2.32) 

The drift velocity in the strong field limit is proportional to the square root 
of the field. 

Before ending this section, let us comment on the e dependence of the 
mean kinetic energy of the charged rod. A straightforward calculation 
yields the formula 

( w  2) = ~ dw w2F(w) 

f + ~  fw r (2.33) = 1 + eB(e) ~ dw F(w) -o~ dw' 12(W,) F(w') 

Performing the asymptotic analysis along the same lines as for the 
drift velocity, one obtains the following results: in the weak-field limit 

(w2) ,:~o 1 + ~e 2 (2.34) 

in the strong-field limit 

( w Z )  ~,~ e (2.35) 

3. D I S C U S S I O N  

One could expect on physical grounds that the main effect of the 
coupling between the charged rod and the field should consist in shifting its 
velocity distribution in the field direction. It turns out that this 
phenomenon is characterized by a well-defined threshold value of the ratio 
between two characteristic energies 

//]q a D  1 threshold 
- = 1 ( 3 . 1 )  

When e < 1 (weak field, high-temperature), the large-velocity asymptotics 
of the stationary distribution F(w) is determined by the heat bath: 
F ( w ) ~  qS(w). When e becomes larger than 1 (strong field, low-temperature) 
the field wins over the thermal bath and slows down the decay of F(w)  
according to the formula F(w)~exp(-w2/2~),  w ~ o~. 

In this sense the shifting action of the field on the stationary dis- 
tribution becomes globally effective above the threshold (3.1). This kind of 
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transition does not occur in the two-speed model (1.3) mentioned in the 
Introduction. Collisions with neutral rods give there the charged particle 
one of the two velocities u or - u ,  and thus cannot influence the high- 
energy tail of its velocity distribution. 

An interesting problem left open in this paper is that of the way in 
which the stationary state (2.13) is approached in the course of the 
evolution described by the Boltzmann equation (1.1). Another question 
which should be answered is to what extent the properties of the stationary 
distributions derived here persist in higher dimensions. It seems that the 
weak- and strong-field dependence of the drift velocity (linear response, 
Eq. (2.25) and proportionality to the square root of the field 
equation (2.32)) is not changed when d>  1. 
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